Cut-Elimination: Experiments with CERES
نویسندگان
چکیده
Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set can then serve as a skeleton of a proof with only atomic cuts. In this paper we present a systematic experiment with the implementation of CERES on a proof of reasonable size and complexity. It turns out that the proof with cuts can be transformed into two mathematically different proofs of the theorem. In particular, the application of positive and negative hyperresolution yield different mathematical arguments. As an unexpected side-effect the derived clauses of the resolution refutation proved particularly interesting as they can be considered as meaningful universal lemmas. Though the proof under investigation is intuitively simple, the experiment demonstrates that new (and relevant) mathematical information on proofs can be obtained by computational methods. It can be considered as a first step in the development of an experimental culture of computer-aided proof analysis in mathematics.
منابع مشابه
Proof Transformation by CERES
Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...
متن کاملEquational Theories in CERES
Cut-elimination is the most important proof transformation in logic. Equality is a central paradigm in mathematics and plays a key role in automated deduction. Therefore its importance awakes the necessity of integrating equality into existing cut-elimination methods. In this paper we extend the resolution-based method of cut-elimination CERES to CERES-e by adding equality (and paramodulation t...
متن کاملSystem Description : The Cut - Elimination System CERES ∗
Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...
متن کاملOn proof mining by cut-elimination
We present cut-elimination as a method of proof mining, in the sense that hidden mathematical information can be extracted by eliminating lemmas from proofs. We present reductive methods for cutelimination and the method ceres (cut-elimination by resolution). A comparison of ceres with reductive methods is given and it is shown that the asymptotic behavior of ceres is superior to that of reduct...
متن کاملCERES in higher-order logic
We define a generalization CERES of the first-order cut-elimination method CERES to higher-order logic. At the core of CERES lies the computation of an (unsatisfiable) set of sequents CS(π) (the characteristic sequent set) from a proof π of a sequent S. A refutation of CS(π) in a higher-order resolution calculus can be used to transform cut-free parts of π (the proof projections) into a cut-fre...
متن کامل